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STABILITY OF ROTATING MAGNETIC STARS AND PLANETS

AS JUPITER AND THE ORIGIN
OF CONVECTIVE MOTION

Kunitomo Sakurai*
Radio Astronomy Branch

Laboratory for Extraterrestrial Physics
NASA/Goddard Space Flight Center

Greenbelt, Maryland, U.S.A.

ABSTRACT

Based on the method of the energy principle, the effect

of the Coriolis force on the stability of rotating hydromagnetic

systems is examined and the condition for instability is

derived. It is shown that, in the rotating systems, the

effect of this force is to inhibit the-onset of convective

motion and that, once the condition for instability i§ ful-

filled, over-stable states are produced with respect to

this motion. Such states seem to be effective on the onset

of turbulent convective motion in the systems.

*NASA Associate with University of Maryland



I. INTRODUCTION

When a rotating magnetic star or planet is in hydrostatic

equilibrium, this state is expressed by

--. -. 1 - - _
pn x (Q x r) = - vp + j x B + pg (1)

curl B = j (2)

and

div B = 0, (3)

where p, n, r, P, c, j, B and g are the mass density, the

angular velocity, the position vector, the pressure, the

speed of light, the electric current, the magnetic field

and the gravity force, respectively.

If we take into account the finiteness of the electrical

conductivity of the system, though very high, it is shown

that the magnetic fields inside the system would necessarily

decay gradually as a result of the Joule dissipation. The

time for this decay is given by

4rr a 2
T = 2 L , (c.g.s.e.s.u)

c

where o and L are the electrical conductivity and the

characteristic length of the system under consideration,

respectively (e.g., Cowling, 1946, 1953). If we assume that

the electrical conductivity a is numerically given as 1012

e.s.u., for instance, in the interior of the earth and Jupiter,
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the above times for these two planets are estimated as

-10 and -10 years, respectively. These magnitudes are

too short to explain the magnetism of the earth and Jupiter

by using the idea of "fossil" magnetism as proposed by

Cowling (1946).

In order to maintain the magnetism of the earth, for

example, we should, therefore, consider the re-generation

process of magnetic fields in its interior. As we have

shown above, it is evident that the system, in which there

is no fluid motion, is not capable of preventing its own

magnetic field from decaying completely. Some type of

convective motions, which seem to be effective on re-

generation or amplification of magnetic fields, must, there-

fore, exist in order to explain the origin and maintenance

of the magnetic fields of stellar objects such as the sun,

Jupiter and the earth.

2. STABILITY IN THE NON-ROTATING SYSTEMS

Since the onset of convective motions is closely related

to the stability of the systems, it is worthwhile to consider

the criterion on their stability. A general method for study-

ing hydromagnetic stability problems has been established with

respect to the non-rotating systems (Bernstein et al., 1958).

The criterion on the onset of instability in such systems is
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given by a following inequality:

F() dv > 0

In fact, any system which fulfilles this inequality is

always unstable (Bernstein et al., 1958). As will be

later discussed, g expresses a given displacement vector

as applied to the system under consideration and t* is its

complex conjugate. F(Q) is given by equation (2-20) in the

paper of Bernstein et al. (1958) and gives a generalized

force induced by g (see (5) later).

3. STABILITY IN THE ROTATING SYSTEMS

When we investigate the stability of rotating hydrogmagnetic

systems, we need consider the effect of the Coriolis force.

Thus the discussion on stability of these systems is different

from the forgoing one as made by Bernstein et al. (1958).

For the rotating systems, the equation of motion is

given as

2i
P a t + 2p Q x at = F(g) (4)at2 at

and

F(M)= grad [Y P div g + (§'grad) P] + j x Q

- B x curl Q + [div (p)] grad 0, (5)

where C, t, 0 and Y are the displacement vector due to

perturbation, the time, the gravitational potential and
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the ratio of two specific heats. Here Q(Q) is given by

Q(t) = curl (t x B) (6)

In the above equation, gradO consists of two terms

as the gravitational and the centrifugal forces, but, in

general, the contribution of centrifugal force is negligibly

small (e.g., Chandrasekhar, 1961). In case which the system

is rotating so fast like pulsars, the force F(t) necessarily

becomes a function of D2 as suggested by Steinitz (1965).

In this paper, we, however, will not consider such cases.

Here we assume that C is expressed as

0 = g (r) e (7)

where C (r) is a complex positional vector. By substituting
0

(7) into (4), we obtain

2
- w2 p + 2iwp (Q x t) = F(Q) (8)

By multiplying scalarly g* (a complex conjugate of ~) with

(8), we futher obtain

-w p* + 2iwp ( x ) = F() (9)

It is known that F(Q) is self-adjoint and therefore the

right side of (10) is always real (e.g., Bernstein et al.,

1958). This equation is here integrated over the volume V,

in which the system under consideration is involved, with the

boundary condition as

n-t 7 0,
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where n is the unit vector perpendicular to the surface

which encloses the above volume. Thus we obtain

_ wfp P " dv + 2wfp * i(0 x g) dv

~= g*-FM) dv (10)

It is clear that the first term on the left side of the

above equation is real and positive.

Since the vectorial operator i[D x .... ] is Hermitian

(see Appendix 1), the second term on the left side of (10)

is also real. Thus, we can solve the above equation algeb-

raically with respect to w.

The solution of (10) for w is given by

1 dv { fi p (D x g) dv

(11)
+ ([ i p E* ( x 5) dv]2 _ [ * dv] f* F (E) dv] 2

In order that w is real, it is necessary that

fJ *'F (g) dv L 0 (12)

because

fp * dv > 0 and [Ji p * ( x ) dv] > 0

Inequality (12) gives a condition that the system under con-

sideration is stable. In so far as this inequality is fulfilled,

the system is always stable.
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Even if inequality (12) is not fulfilled, the system

is also stable when

[fi P f*(px ) dy]2 F-p f * dV] I[ f*.F(g) dv] >0.
(13)

In consequence, the system is unstable when the above two

inequalities, (12) and (13), are not fulfilled: when in-

equaltiy

i[ ip g*(Q x §) dv < F dv (14)
f* dv] < 'F(§) dv (14)

is fulfilled, the system is always unstable. The left side

of the above inequality is always positive unless Q = 0.

Although the form of g is not specified in the above

inequality, the result of (14) gives a general criterion on

instability of the system. Only when this inequality is

fulfilled, the system is unstable. It should be remarked

that the lowest value of the onset of instability increases

in proportion with 42 as is deduced from the left side of

(14). This means that the effect of the Coriolis force is to

inhibit the onset of convection.

4. DISCUSSION ON THE ONSET OF CONVECTIVE MOTION

Since the left side of (14) is always positive, it is

clear that the effect of the Coriolis force is to stabilize

the system by inhibiting the onset of convective motion.
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In other words, the rotating system would, in general,

be stabilized due to the action of the Coriolis force,

because the lowest value for the onset of instability is

raised by the amount of [ ipt* (Q x §) dv] [ p* dv]

(> O) in comparison with that for the non-rotating systems.

The stabilizing effect by the Coriolis force has also been

found in the-case for the rotating fluid heated below

(Chandrasekhar, 1953).

Once inequality (14) is fulfilled, the system moves to

-an over-stable state as is deduced from (11). Then con-

vective motion is set up in the system, but is oscillatory

in nature.

In these above discussions, we had better remarked

some restriction on the applicability of the formulae con-

sidered in the last section, because the present discussion

cannot be applied to the case, in which the effect of the

Coriolis force is so strong that the same perturbation C

cannot be used for both the rotating and non-rotating systems.

Namely, our present result is only useful for the rotating

systems where the term of the Coriolis force can be treated

as a small perturbation with respect to the non-rotating

systems.

As shown above, the onset of over-stability is usually

inhibited by the effect of the Coriolis force. However,
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once the state of over-stability is reached, convective

motion is generated and, later on, seems to become turbulent

due to the further growth of over-stability in the system.

Since the build-up of convective motion is highly inhibited

in comparison with the case for the non-rotating systems,

it can be said that the rotating stars, in which there

exists convective motion, are relatively rare.

At present, we have known that, although stars are

more or less rotating, all of them do not necessarily have

their own magnetic fields. In the very early history of

their evolution, the most stars might have captured the

magnetic fields in the interstellar space and therefore

they must have had their own magnetic fields during their

young ages. As discussed earlier in this paper, these fields,

however, might have decayed throughout their evolution by

the Joule dissipation unless there existed convective motion

in their interior. Since the effect of the Coriolis force

is to inhibit the onset of convective motion, the rotation

of stars must have worked as an obstracle on the maintenance

of their own magnetic fields while the systems are stable.

This fact seems to be one of the reasons why, at present,

very limited number of stars and planets only have their own

magnetic fields.
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For the first time, the effect of the Coriolis force

is to inhibit the onset of convective motion. Once this

motio -is set up, it seems, however, that the role of this

force enforces to build up turbulent motion as a result of

over-stability. Important is that turbulent motion in the

rotating systems is non-reflectionsymmetric on account of

the action of this force (e.g., Braginskii, 1965; Steenbeck

and Krause, 1969). Thus the onset of turbulent motion in the

rotating systems seems to be very important from the view

point on the dynamo action for the maintenance of the magnetic

fields of stellar objects (e.g., Parker, 1969, 1970).

5. CONCLUDING REMARKS

In this paper, we have shown that the effect of the

Coriolis force is to inhibit the onset of convection in the

rotating hydromagnetic systems. Since, as is evident from

(14), the lowest state on the onset of convective motion is

proportional to 2 , the effect of the Coriolis force becomes

larger as the magnitude of Q increases. In this case, the

state which is not stable is always over-stable. Turbulent

motion which seems to develop from the oscillatory growth

of convective motion would be effective on the dynamo action

on magnetic fields in the systems.
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APPENDIX 1

The second term on the left-hand side of (10) is re-

written as

i(Q x g) dv = i(e x §) dv, (A-l)

where e is the unit vector in the direction of Q.

Let us examine whether the above term fulflles the follow-

ing equality

J p A r dv =fA cp dv, (A-2)

where p and r are functions of complex variables and A is

the operator (see Schiff, 1968). In our case,

and

A = i[e x...].

By using these definitions, we calculate the right-hand

side of (A-2):

- fi(e x )' dv

= Ji g (ex x) dv = aJi(e x ~) g dv

= fji (e x ~) dv (A-3)

This calculation thus shows that expression (A-1) is

Hermitian: i.e., the operator A is Hermitian. This means

that e x ) dv is purely imaginary.fie r-
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